

### **Show Me the Numbers**

### A Framework for Balanced Distributed Solar Policies

**Prepared for Consumers Union** 

November 13, 2016

Tim Woolf Melissa Whited Patrick Knight Tommy Vitolo, PhD Kenji Takahashi

Available at <u>www.synapse-energy.com</u>

www.synapse-energy.com | ©2016 Synapse Energy Economics Inc. All rights reserved.

## **Overview**

- Distributed solar policies should strike a balance between:
  - encouraging the growth of cost-effective solar resources, and
  - avoiding undue or unreasonable impacts on non-solar customers.
- Three questions should be answered to inform this balance:
  - 1. How will solar policies affect the development of distributed solar resources?
  - 2. What are the costs and benefits of distributed solar policies?
  - 3. What are the cost-shifting impacts of distributed solar policies?
- This report offers a framework for analyzing these questions in a way that is data-driven and transparent.
- The framework should be applied using utility-specific or statespecific data.

## **Distributed Solar Policies**

| Policy                               | Examples                                                                                                                                 |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Compensation<br>Mechanisms           | Net metering, feed-in-tariff, value-of-solar tariff, renewable<br>energy certificates, rooftop lease payments, performance<br>incentives |
| Rate Design                          | Fixed charges, demand charges, time-of-use rates, bypassable versus non-bypassable bill components                                       |
| Up-Front Incentives and<br>Financing | Investment tax credits, sales tax exemptions, rebates, loans, grants                                                                     |
| Interconnection and<br>Permitting    | Expedited review, mandated time limits, zoning exemptions, interconnection and permitting fees                                           |
| Integration and<br>Planning          | Hosting capacity analyses, integrated resource planning, distribution system planning                                                    |
| Ownership                            | Customer up-front purchase, third-party ownership, utility ownership and lease to customer, loans                                        |
| Education, Training,<br>And Outreach | Information, tools, workshops, online assistance, community outreach                                                                     |

## The Role of Rate Design

#### **Cost of Service Studies**

- Goal: Cost allocation
- •<u>Costs</u>: Based on historical (embedded) costs
- <u>Connection</u>: Used as one input to rate design, but does not dictate rate design.

#### Rate Design

- •<u>Goal</u>: Revenue recovery, equity, efficient price signals
- •<u>Costs</u>: Addresses both historical and future costs
- <u>Connection</u>: Price signals influence distributed solar and energy usage decisions

#### **Resource Planning**

- •<u>Goal</u>: To provide low-cost, reliable, safe, electric service
- Costs: Based on future costs
- <u>Connection</u>: Influenced by customer distributed solar and energy usage decisions.
   Also may influence future customer investment decisions.

# **1.** Customer Adoption Analysis:

How will solar policies affect the development of distributed solar resources?

### **Customer Payback Period**

The customer payback period provides very useful information regarding customer adoption of distributed solar.

Payback calculation is straightforward:

- Forecast annual customer bills without solar.
- Forecast annual customer costs with solar.
  - Upfront solar system costs
  - On-going solar system costs
  - Solar generation
- Forecast host customer benefits (tax incentives, SRECs, etc.)
- Simple payback period:
  - Year in which the cumulative benefits exceed cumulative costs.
- All of this information is readily available and not very contentious.

### Hypothetical Example: Rate Design/ Compensation and Solar Adoption

#### **Payback Period Analysis**



### **Payback Periods and Adoption Rates**



Source: NREL (Sigrin et al. 2016)

### **Estimated 5-Year Penetration**

#### **Bass Diffusion Model:**



Graph assumes that market saturation (at 20 percent) occurs in 10 years.

#### 2021 Penetration Level (i.e., after 5 years)



# 2. Cost-Effectiveness Analysis:

What are the costs and benefits of distributed solar policies?

### **Costs and Benefits**

#### **Benefits**

**Avoided Energy Costs** 

**Avoided Generation Capacity Costs** 

Avoided Losses

Avoided Transmission & Distribution Costs

Avoided Environmental Compliance Costs

**Avoided Ancillary Services** 

**Reduced Risk** 

Societal Benefits (e.g., environmental benefits)

#### Costs

Administration costs

Interconnection Costs

Distribution System Upgrades

**Participant Costs** 

This list is meant to be illustrative, not exhaustive.

## Which Costs and Benefits Should You Count?

### 1. Utility Cost Test

- Costs and benefits that affect utility revenue requirements  $\rightarrow$  customer bills
- Primary advantage: simple and focused on reducing utility costs
- Primary limitation: does not account for energy policy goals (beside the goal of reducing costs)

#### 2. Total Resource Cost Test

- Utility system costs + Host customer costs
- Primary advantage: includes the total cost of the resource
- Primary limitation: includes all societal costs but not all societal benefits

### 3. Societal Cost Test

- Utility system costs + Host customer costs + Societal impacts
- Primary advantage: reflects the full range of policy goals
- Primary disadvantage: might place too much emphasis on societal impacts, relative to the goal of reducing costs

## What About Lost Revenues and the RIM Test?

- The lost revenues from distributed solar generation should not be included in the cost-effectiveness analysis.
  - Including lost revenues in the analysis is the Rate Impact Measure (RIM) test.
- The RIM test conflates cost-effectiveness with cost-shifting.
  - Cost-effectiveness analyses should only include future (avoidable) costs.
  - Lost revenues are a result of historic (unavoidable, sunk) costs.
- The RIM test does not provide information needed to understand either cost-effectiveness or cost shifting.
- But lost revenues are critically important, because they can lead to costshifting.
- Cost-shifting should be analyzed through a rate and bill impact analysis.
  - This will provide meaningful information on how non-solar customers might be impacted by distributed solar resources.
  - Third analysis (see below).

### **Utility Cost Test – Example of Costs and Benefits**



### **TRC Test – Example of Costs and Benefits**



### **Societal Cost Test – Example of Costs and Benefits**





### **Illustrative Example**

## High and Low Utility Avoided Costs Modeled

### **Cost-Effectiveness Results**



# 3. Rate and Bill Impact Analysis:

What Are the Cost-Shifting Impacts of Distributed Solar Policies?

## **Rate and Bill Impact Analysis**

- Use same information and similar approach as cost-effectiveness analysis.
  - But include the effect of lost revenues
- Scenario without PV policy:
  - Forecast all the utility system costs
  - Forecast the utility sales
  - Rates = costs/sales
  - Monthly bills = rates times monthly sales
- Scenario with PV policy:
  - Utility system costs (reduced by avoided costs, increased by integration costs)
  - Utility sales (reduced by PV generation)
  - Rates = costs/sales
  - Monthly bills = rates times monthly sales
- Rate and bill impacts = difference between scenarios.
- Should estimate both short-term and long-term impacts.

### **Net Impact on Rates**

• Which effect is bigger?



### **Solar Generation Credits vs. Avoided Costs**

Long-term average impacts:



www.synapse-energy.com | ©2016 Synapse Energy Economics Inc. All rights reserved.

## **Cost-Shifting: Example Results**

#### Average impacts over 25 years



# Framework:

**Present and Consider Results of all Three Analyses** 

### **Hypothetical Results: Low Avoided Costs**

|                   | I. Distributed Solar<br>Development |                       | 2. Cost Effectiveness      |                        |                             | 3. Rate and Bill<br>Impacts |                                      |
|-------------------|-------------------------------------|-----------------------|----------------------------|------------------------|-----------------------------|-----------------------------|--------------------------------------|
|                   | Customer<br>Payback                 | 5-Year<br>Penetration | Utility<br>Net<br>Benefits | TRC<br>Net<br>Benefits | Societal<br>Net<br>Benefits | Avg. Bill<br>Impact         | Long-<br>Term<br>Avg. Bill<br>Impact |
|                   | Years                               | %                     | 2015 \$<br>Million         | 2015 \$<br>Million     | 2015 \$<br>Million          | 2015<br>\$/mo               | %                                    |
| Flat Rate         | 14                                  | 7%                    | \$2,400                    | \$900                  | \$1,100                     | \$1.67                      | 1.1%                                 |
| High Fixed Charge | 16                                  | 6%                    | \$2,000                    | \$700                  | \$900                       | \$0.33                      | 0.2%                                 |
| Minimum Bill      | 15                                  | 7%                    | \$2,300                    | \$800                  | \$1,000                     | \$0.72                      | 0.5%                                 |

## **Hypothetical Results: High Avoided Costs**

|                   | I. Distributed Solar<br>Development |                       | 2. Cost Effectiveness      |                        |                             | 3. Rate and Bill<br>Impacts |                                      |
|-------------------|-------------------------------------|-----------------------|----------------------------|------------------------|-----------------------------|-----------------------------|--------------------------------------|
|                   | Customer<br>Payback                 | 5-Year<br>Penetration | Utility<br>Net<br>Benefits | TRC<br>Net<br>Benefits | Societal<br>Net<br>Benefits | Avg. Bill<br>Impact         | Long-<br>Term<br>Avg. Bill<br>Impact |
|                   | Years                               | %                     | 2015 \$<br>Million         | 2015 \$<br>Million     | 2015 \$<br>Million          | 2015<br>\$/mo               | %                                    |
| Flat Rate         | 14                                  | 7%                    | \$3,300                    | \$1,800                | \$2,000                     | -\$0.98                     | -0.7%                                |
| High Fixed Charge | 16                                  | 6%                    | \$2,700                    | \$1,400                | \$1,600                     | -\$1.81                     | -1.2%                                |
| Minimum Bill      | 15                                  | 7%                    | \$3,100                    | \$1,600                | \$1,800                     | -\$1.74                     | -1.2%                                |

## **Important Considerations**

- Results will be different for each state and, perhaps, each utility.
  - Analyses should be state-specific or utility-specific.
  - The results in our report cannot be applied to your state.
- Cost-effectiveness and cost-shifting analyses are very sensitive to avoided costs.
  - Avoided cost estimates should (a) be directed by regulators, (b) allow for stakeholder review and input, (c) transparent to all, and (d) updated as needed.
  - Can use a range of avoided costs.
- Results will likely change over time as conditions change.
  - All three analyses should be updated on a regular basis.
  - Solar policies should be updated, prospectively, on a regular basis to reflect the results of new analyses.

# **Illustrative Example:**

Other Rate Designs

### Flat Rate vs. TOU vs. Demand Charge

| Policy        | Rate Design                          |  |  |  |  |
|---------------|--------------------------------------|--|--|--|--|
| Elat Pato     | \$0.14/kWh                           |  |  |  |  |
| FIGL NOLE     | \$5 fixed charge                     |  |  |  |  |
|               | \$0.155/kWh Peak (9 am - 8:59 pm)    |  |  |  |  |
| ΤΟυ           | \$0.110/kWh Off-peak (9 pm – 8:59 am |  |  |  |  |
|               | \$5 fixed charge                     |  |  |  |  |
|               | \$0.11/kWh                           |  |  |  |  |
| Domand Charge | \$10/kW (based on maximum hour of    |  |  |  |  |
| Demand Charge | month)                               |  |  |  |  |
|               | \$5 fixed charge                     |  |  |  |  |

### Flat Rate vs. TOU vs. Demand Charge





### Flat Rate vs. TOU vs. Demand Charge



#### Cost-Effectiveness (Net Benefits)



# **Illustrative Example:**

**TOU Rate Sensitivity** 

## **TOU Rate Sensitivity**

| TOU Rate<br>Name           | Hours                                                                                                         | Rate Design                                             |
|----------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| TOU<br>Afternoon<br>Peak   | Peak: 2:00 pm – 5:59 pm<br>Shoulder: 6:00 am – 1:59 pm,<br>6:00 pm – 11:59 pm<br>Off-Peak: 12:00 am – 5:59 am | Peak: \$0.155<br>Shoulder: \$0.138<br>Off-Peak: \$0.130 |
| TOU Evening                | Peak: 5:00 pm – 8:59 pm<br>Shoulder: 2:00 pm – 4:59 pm,<br>9 pm – 11:59 pm<br>Off-Peak: 12:00 am – 1:59 pm    | Peak: \$0.220<br>Shoulder: \$0.135<br>Off-Peak: \$0.090 |
| Peak<br>TOU<br>Extended PM | Peak: 2:00 pm – 8:59 pm<br>Off-Peak: 9:00 pm – 1:59 pm                                                        | Peak: \$0.200<br>Off-Peak: \$0.090                      |
| Peak                       |                                                                                                               |                                                         |
|                            |                                                                                                               |                                                         |

### **TOU Payback and Penetration**





## **TOU Cost-Effectiveness and Cost-Shifting**



#### Cost-Effectiveness (Net Benefits)



# **Illustrative Example:**

**Alternative Compensation Mechanisms** 

### **Alternative Compensation Mechanisms**

| Policy                | Credit for Behind-the-<br>Meter Generation | Credit for Generation<br>Exported to Grid                            | Credit for Monthly<br>Excess Generation |
|-----------------------|--------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| Full Net Metering     | Full retail rate (\$0.14)                  | Full retail rate (\$0.14)                                            | Full retail rate (\$0.14)               |
| Instantaneous Netting | Full retail rate (\$0.14)                  | \$0.08 for any generation<br>not consumed<br>immediately on-site     | \$0.08                                  |
| Net Billing           | Full retail rate (\$0.14)                  | Full retail rate (\$0.14)<br>until generation exceeds<br>consumption | \$0.03                                  |

### **Payback and Penetration**





### **Cost-Effectiveness and Cost-Shifting**



#### Cost-Effectiveness (Net Benefits)



### Contact

### Melissa Whited Synapse Energy Economics

617-661-3248 mwhited@synapse-energy.com www.synapse-energy.com

#### **About Synapse Energy Economics**

- Synapse Energy Economics is a research and consulting firm specializing in energy, economic, and environmental topics. Since its inception in 1996, Synapse has become a leader in providing rigorous analysis of the electric power sector for public interest and governmental clients.
- Staff of 30+ experts
- Located in Cambridge, Massachusetts

Appendix

## **Solar Costs**

• Will mainland penetrations follow Hawaii if costs continue to fall?



Median Installed Cost – Residential PV

Source: Barbose and Darghouth, LBNL, Tracking the Sun IX, 2016

## **Demand Charge vs. TOU Rates**

### • Demand Charge:

• Customer A and Customer B pay the same bill.

# **Peak Hours** TOU Rates: Result in Customer B paying a higher bill than Customer A. **TOU** Rate **Customer B Customer A** \$/kWh $\sum_{i=0}^{j} \sum_{k=0}^{j} \sum_{$

## **Full Net Metering**

- Full retail rate for all generation ("one-for-one netting")
- Credits rolled over to following month at full retail rate

### May:

```
Monthly total generation = 950 kWh
```

Monthly total consumption = 900 kWh

Net consumption =  $-50 \text{ kWh} \leftarrow$  "Excess Generation"

Customer Bill:  $$0.12 \times -50 \text{ kWh} = -$6.00$ 

#### June:

```
Monthly total generation = 1000 kWh
Monthly total consumption = 1200 kWh
Net consumption = 200 kWh
$0.12 x 200 kWh = $24.00
Credit from May = $6.00
Customer Bill: $18.00
```

## **Other Compensation Options**

- Net Billing with Reduced Compensation for Monthly Excess Generation
- Instantaneous Netting with Reduced Compensation for Exports to Grid

