

Strategic Electrification

January 18, 2018

Panelists

Asa S. Hopkins, PhD

Kenji Takahashi

Danielle Goldberg

Moderator: Bruce Biewald, Founder and CEO

Webinar Logistics

- The webinar is being recorded and will be circulated to all attendees, along with the slides
- All attendees have been muted on entry and will remain muted throughout the webinar
- Please send any questions on the content of the webinar to webinar@synapse-energy.com
- During the Q&A session, the panelists will answer written questions that have been sent to <u>webinar@synapse-energy.com</u>
- Please use the chat feature only to notify the host if you are having a technical issue with the WebEx software or audio

Who we are

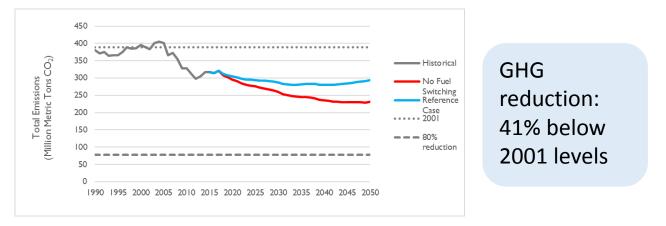
Synapse Energy Economics

- Founded in 1996 by CEO Bruce Biewald
- Research and consulting firm specializing in energy, economic, and environmental topics
- Services include economic and technical analyses, regulatory support, research and report writing, policy analysis and development, representation in stakeholder committees, facilitation, trainings, and expert witness services for public interest and government clients
- All non-confidential publications and open-source tools available for free at <u>www.synapse-energy.com</u>

Agenda

- Analyzing Strategic Electrification The Big Picture
- Fuel Switching with Heat Pumps

Analyzing Strategic Electrification The Big Picture

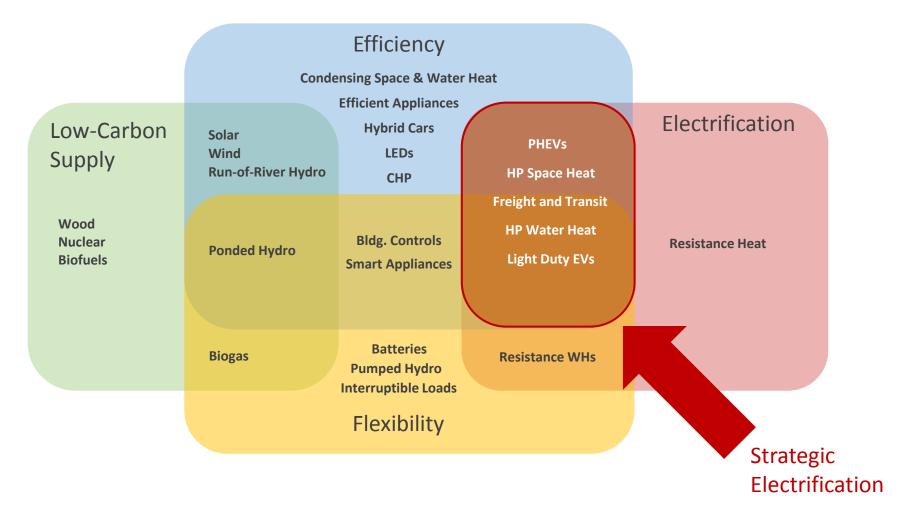

Outline

- Why electrification?
- Defining "strategic electrification"
- Hitting 2050 GHG goals
 - Markets transition
 - Resulting impacts and implications

- Based on work for the Northeast Energy Efficiency Partnerships (NEEP) on electrification in New England and New York
- Also draw upon Minnesota work supported by another client

Decarbonizing via EE and zero-carbon electricity falls short

95% zero carbon electricity on the grid, plus aggressive electric and thermal energy efficiency (Northeast example):

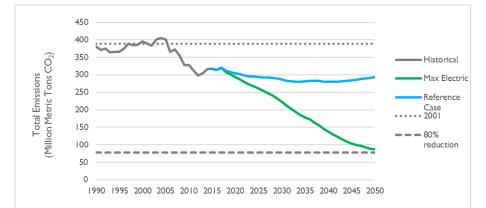


To get deep decarbonization, Northeast needs to switch direct fuel use to zero- or low-carbon sources, like electricity.

www.synapse-energy.com | ©2018 Synapse Energy Economics Inc. All rights reserved.

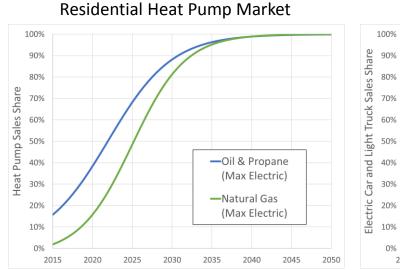
Finding the sweet spot

"Strategic Electrification" means...

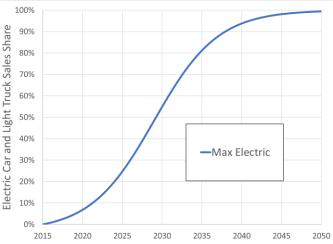

- powering end uses with electricity instead of fossil fuels
- in a way that increases energy efficiency and reduces pollution,
- while lowering costs to customers and society,
- as part of an integrated approach to deep decarbonization.

Assume we do the "right" things on efficiency, flexibility, and low-carbon electric supply:

- How fast do electrification markets need to transform to get to 80% GHG reduction?
- What if we also plan to use some bioenergy?
- What are the electric supply needs?
- What impacts should we expect on the grid, and on consumers?

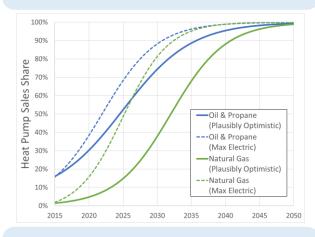

"Max Electric" case: 80% via electrification

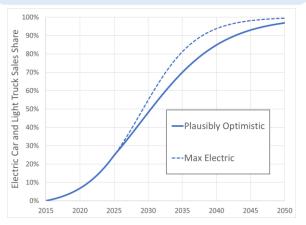
GHG emissions 77% below 2001 levels by 2050 electrifying heat and on-road transport (get the rest from miscellaneous uses)

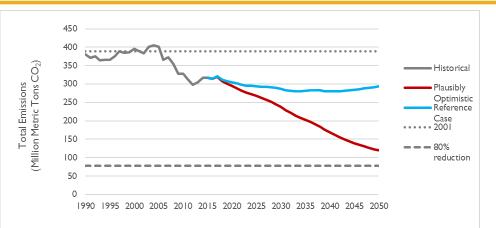


Electric consumption rises 55% from current levels

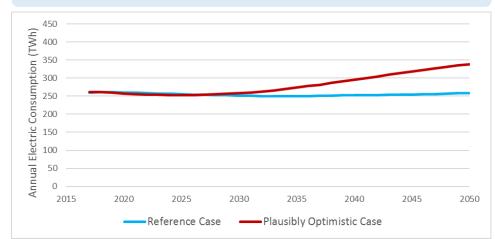
Markets need to transform fast


Electric Car & Light Truck Market

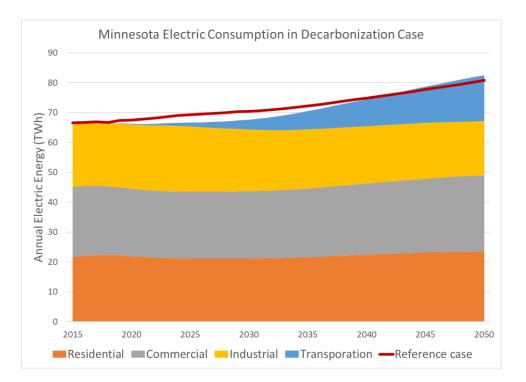

www.synapse-energy.com | ©2018 Synapse Energy Economics Inc. All rights reserved.


"Plausibly Optimistic" case: 69% from electrification

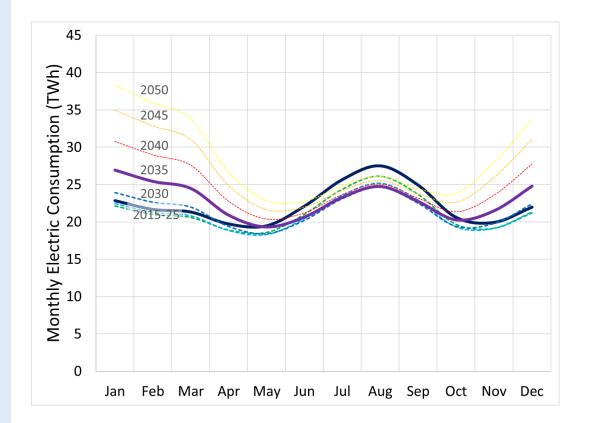
Res. HP market penetration: 5-15 years slower than "all-in" case


Light EV same through 2025, but slower after

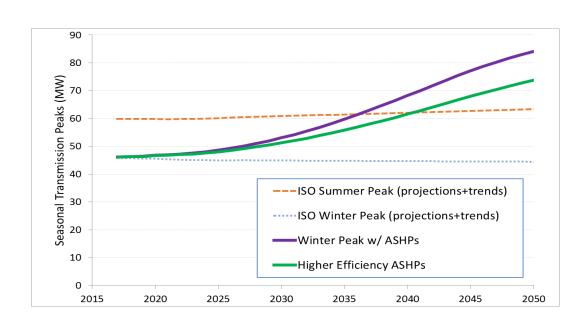
Need biogas/biofuels to get to 80% reduction


Annual electric consumption rises 30% from current

www.synapse-energy.com | ©2018 Synapse Energy Economics Inc. All rights reserved.


Results vary by region: Minnesota example

- Accelerate energy efficiency (20%-33% reduction from the Reference case by 2050)
- By 2050:
 - Heat pumps provide 63%-75% of space and water heat
 - 89% of light-duty miles on electricity
- 80% GHG reduction from 2015 levels if electricity is 90+% zero-carbon

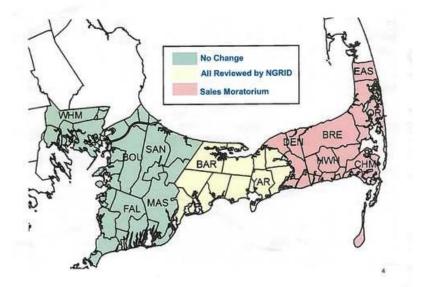


Shifting Northeastern seasonal load shape

- January consumption passes August in the mid-2030s
- Need new low-carbon electricity supplies, biased toward winter
- One grid challenge: Reach and integrate new variable supplies

Higher efficiency HPs have grid benefits

- Illustrative calculation indicates that higherefficiency HPs can delay the region's shift to winter peaking by 4-5 years
- Clustering on distribution system → winter peaks sooner
- Potential for substantial T&D cost savings from winter EE


Future work

- What about other regions, climate zones, relative fuel prices, and electric emissions?
 - What about a two-week "arctic" period like we just had?
- How good do building shells need to be to allow heat pumps to shine for customers and be good citizens on the grid?
 - How much electrification before distribution circuits require upgrades?
- How will the grid and power supply meet the need for a very different seasonal load shape, supplied by low-carbon resources?
- What rates and incentive structures are best suited to move electrification markets at the pace required?
- What's the relative cost-effectiveness of electrification vs. renewable gas?

Fuel Switching with Heat Pumps

Background

- Massachusetts state policies and regulations support strategic electrification
- The Cape Light Compact asked Synapse to assess the cost-effectiveness of fuel switching with heat pumps for the 2019-2021 Three-Year Energy Efficiency Plan
- Cape residents have limited access to natural gas
- Alternatives to oil, propane, and electric resistance heating systems

Conventional HVAC Options

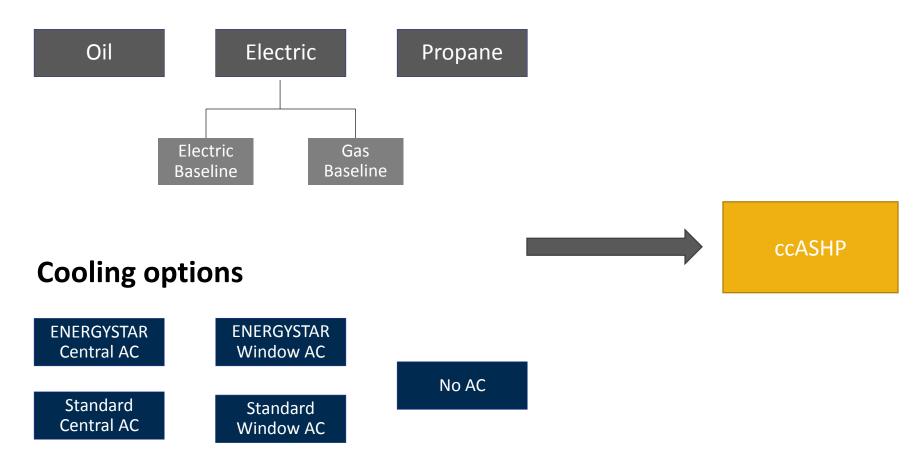
Air Source Heat Pumps

Scenarios for Heating Options

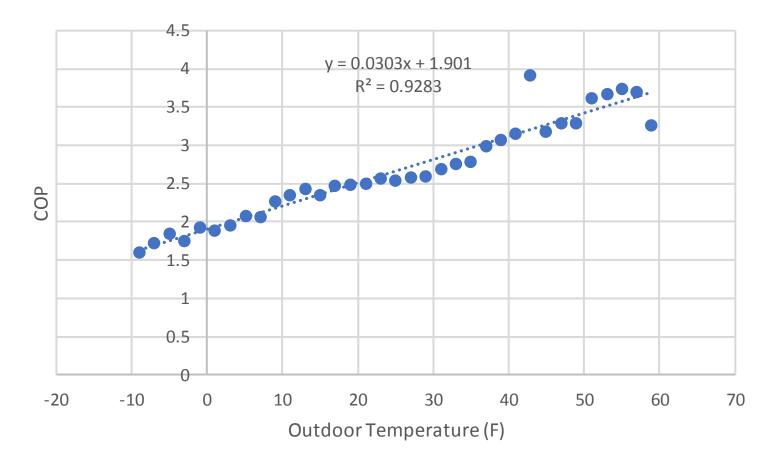
Keep Existing

 Keeps their existing system as supplemental heating

Replace-on-Failure


 Removes the existing heating system completely at the end of its useful life

Early Retirement


 Removes the existing heating system completely before the end of its useful life

Fuel Types

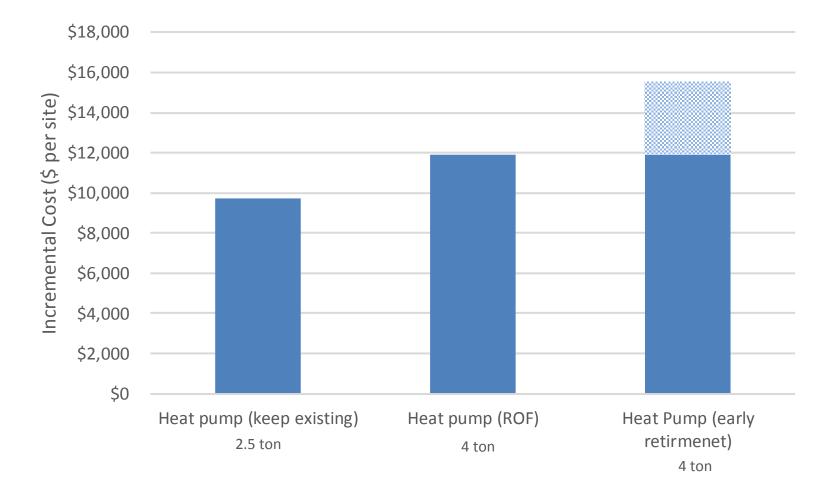
Heating options

Heat Pump Performance

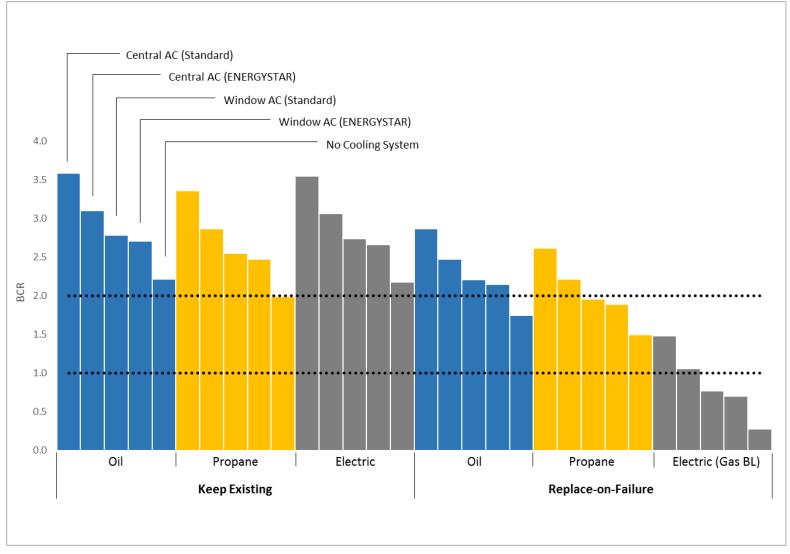
Source: Cadmus (2016), Ductless Mini-Split Heat Pump Impact Evaluation

Benefit Cost Analysis Framework

 Total Resource Cost (TRC) test - Massachusetts' primary cost-effectiveness screening test for energy efficiency programs

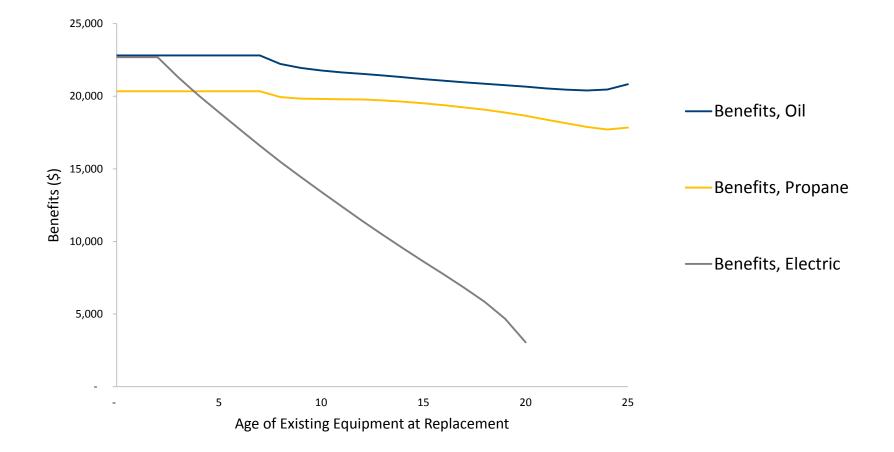

• Upfront Costs

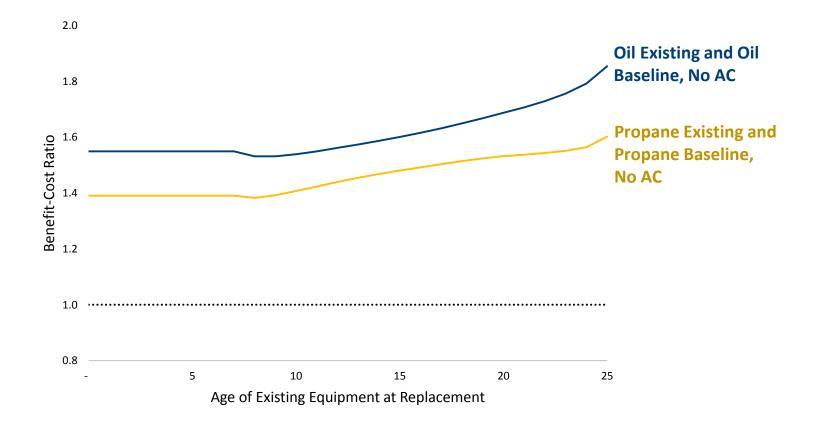
Incremental cost of a new heat pump


• Key Benefit Costs

- Avoided cost of fossil fuels (heating)
- Avoided cost of electricity (heating & cooling)
- Avoided cost of generation capacity (cooling)
- Avoided transmission and distribution (cooling)
- DRIPE (demand reduction induced price effects) (heating & cooling)

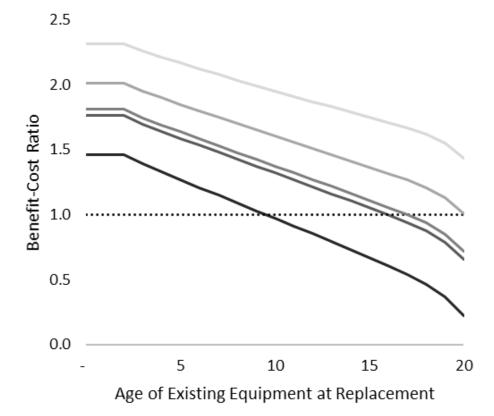
Cost Assumptions by Scenario


Keep Existing and ROF Results


*We modeled both boilers and furnaces, but these results are specific to furnaces. Boilers were uniformly more cost-effective to replace.

www.synapse-energy.com | ©2018 Synapse Energy Economics Inc. All rights reserved.

Early Retirement - Benefits


Early Retirement – Oil and Propane

www.synapse-energy.com | ©2018 Synapse Energy Economics Inc. All rights reserved.

Takahashi & Goldberg 28

Early Retirement – Electric

Electric Existing with Gas Baseline, Standard Central AC

Electric Existing with Gas Baseline, ENERGYSTAR Central AC

Electric Existing with Gas Baseline, Standard Window AC

Electric Existing with Gas Baseline, ENERGYSTAR Window AC

Electric Existing with Gas Baseline, No AC

Customer Payback Period

Heating and Cooling Scenarios	Annual Bill Savings (\$)	Payback Period without Incentive (Years)
Heating, ROF, Oil	\$255	5 25+
Heating, ROF, Electric (Gas BL)	-\$261	None
Heating, ROF, Propane	\$1,462	29
Heating, Keep, Oil	\$410) 24
Heating, Keep, Electric	\$2,799) 4
Heating, Keep, Propane	\$1,654	l 6

Questions? webinar@synapse-energy.com

Want to team up with us?

Synapse provides:

- Economic and power system modeling
- Research and report writing
- Policy analysis and development
- Representation in voting and stakeholder committees

- Economic and technical analysis
- Expert witness services
- Regulatory support
- Facilitation and trainings
- Development of analytical tools

Contact Information

Dr. Asa Hopkins, <u>ahopkins@synapse-energy.com</u> Kenji Takahashi, <u>ktakahashi@synapse-energy.com</u> Danielle Goldberg, <u>dgoldberg@synapse-energy.com</u> **Extra Slides**

Extra - Heating Costs and Savings

Heating Scenario	Baseline System	Gross Annual Electricity Saved (kWh)				Total Resource Cost (\$)	Replacement Discount Credit (\$)
Heating, ROF, Oil	Oil Baseline	(5,752)	84	3,640	15,543	11,903	3,640
Heating, ROF, Electric (Gas BL)	Gas Baseline	(6,852)	82	4,541	15,543	11,002	4,541
Heating, ROF, Propane	Propane Baseline	(5,752)	82	3,640	15,543	11,903	3,640
Heating, Keep, Oil	Oil Existing	(5,375)	83		9,714	9,714	
Heating, Keep, Electric	Electric Existing	12,740	-		9,714	9,714	L -
Heating, Keep, Propane	Propane Existing	(5,375)	83		9,714	9,714	. <u>-</u>
Heating, Early Retire, Replace, Oil (EE)	Oil Baseline	(5,752)	84	3,640	15,543	15,543	-
Heating, Early Retire, Replace, Oil (RE)	Oil Existing	(5,752)	90		· -		
Heating, Early Retire, Replace, Electric (EE) (Gas BL)	Gas Baseline	(6,852)	82	4,541	15,543	15,543	; -
Heating, Early Retire, Replace, Electric (RE) (Gas BL)	Electric Existing	13,664	-	-			
Heating, Early Retire, Replace, Propane (EE)	Propane Baseline	(5,752)	82	3,640	15,543	15,543	; -
Heating, Early Retire, Replace, Propane (RE)	Propane Existing	(5,752)	90		· -		

Cooling Scenario	Annual Consumption (kWh)	Incremental Savings to Heat Pumps (kWh)
Window AC (Standard)	4	45 301
Window AC (Energy Star)	4	04 260
Central AC (Standard), 2.5 ton	1,0	80 936
Central AC (Energy Star), 2.5 ton	7	45 601
Heat Pump	1	44 -

www.synapse-energy.com | ©2018 Synapse Energy Economics Inc. All rights reserved.

Extra - Key Inputs

Cooling System	Cooling Capacity (BTU/Hr)	EER/SEER (BTU/W-h)	EFLH (Eqivalent Full Load Hours) (Hr)
Cooling, Retire, Window (Standard)	10,000	9.8	218
Cooling, Retire, Window (ENERGY STAR)	10,000	10.8	218
Cooling, Retire, Central (Standard)	30,000	10.0	360
Cooling, Retire, Central (ENERGY STAR)	30,000	14.5	360
Heat Pump	14,680	22.3	218

Cooling System	Units/Household	Incremental Cost/Unit (\$)
Cooling, Retire, Window (Standard)	2	\$ -
Cooling, Retire, Window (ENERGY STAR)	2	\$ -
Cooling, Retire, Central (Standard)	1	\$ -
Cooling, Retire, Central (ENERGY STAR)	1	\$
Heat Pump	1	\$-

Extra - Key Inputs

Heat Pump Data - Single Family Application

	ccASHP + Existing System	ccASHP only System
ccASHP size		
Temp threshold for sizing ccASHP operation (F)	20.	0 13.0
Manual S system size safety margin/buffer (%)	1009	6 130%
ccASHP capacity adjustment factor for a 47 F level (%)	1209	6 120%
ccASHP heating size with a size buffer (kBtu/h)	23.	1 34.7
Peak heating load at temp threshold (kbtu/h)	23.	1 26.7
ccASHP heating size at 47 F (kbtu/h)	27.	8 41.8
ccASHP heating size at 47 F (ton)	2.	5 4.0
# of hours for supplemental heating operation	216.	0 N/A
% supplemental heating operation	2.5%	6 N/A
Total load served by supplemental heating (MMBtu)	5.	5 N/A
ccASHP efficiency		
СОР	3.	1 3.0
ccASHP price		
ccASHP price per house	9,71	4 15,543
Heating load		
Annual heating load* (MMBtu)	70.	0 70.0
Annual load served by ccASHP (MMbtu)	64.	5 70.0